On Restricted Leibniz Algebras
نویسندگان
چکیده
In this paper we prove that in prime characteristic there is a functor −p-Leib from the category of diassociative algebras to the category of restricted Leibniz algebras, generalizing the functor from associative algebras to restricted Lie algebras. Moreover we define the notion of restricted universal enveloping diassociative algebra Udp(g) of a restricted Leibniz algebra g and we show that Udp is left adjoint to the functor −p-Leib. We also construct the restricted enveloping algebra, which classifies the restricted Leibniz modules. In the last section we put a restricted pre-Lie structure on the tensor product of a Leibniz algebra by a Zinbiel algebra.
منابع مشابه
Stem Extensions and Stem Covers of Leibniz Algebras
Some properties on stem extensions and stem covers of Leibniz algebras are studied by means of exact sequences associated to a central extension of Leibniz algebras. We obtain particular results in case of perfect Leibniz algebras. 2000 Mathematics Subject Classification: 17A32.
متن کاملOn universal central extensions of Hom-Leibniz algebras
In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, univer...
متن کاملOn Classification of Complex Filiform Leibniz
Abstract. This work deal with Leibniz algebras. It is shown that in classifying of filiform non-Lie Leibniz algebras over the field of complex numbers which are obtained from the naturally graded non-Lie Leibniz algebras it suffices to consider some special basis transformations. Using this result, we derive a criterion that ascertains whether given two such filiform non-Lie Leibniz algebras ar...
متن کاملLeibniz Algebras and Lie Algebras
This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.
متن کامل